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ABSTRACT 
ProPublica’s story, Aggression Detectors: The Unproven, Invasive 
Surveillance Technology Schools Are Using to Monitor Students, 
investigated microphones equipped with machine learning 
algorithms that purport to identify stressed and angry voices before 
violence erupts.  Here, we describe the testing and data analysis we 
conducted for the algorithm. Our results raise concerns about the 
device, particularly for the school environments for which it is 
marketed and sold. 

Our testing and analysis found that while the algorithm frequently 
produced false findings of aggression for sounds such as laughing, 
coughing, cheering and loud discussions, certain types of 
screaming that we expected to trigger the algorithm often failed to 
do so. Given that the it operates off of audio features and does not 
take context or meaning into account, the apparent errors we found 
are foreseeable. 

Academics and lawmakers have raised questions about using big 
data and algorithms as a substitute for human judgment. We 
describe blind spots that we found for a particular instance of such 
algorithms and hope that this study prompts further discussion and 
research into surveillance devices sold to the public, and 
algorithmic decision making in general. 
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1 Summary 
This companion paper to our story, Aggression Detectors: The 
Unproven, Invasive Surveillance Technology Schools Are Using to 
Monitor Students, describes the testing and data analysis 
ProPublica conducted for the Sound Intelligence aggression 
detection algorithm on the Louroe Digifact A microphone. Here, 
we discuss the data and methodology used for our research, as well 
as the results of our testing and analysis. Those results raise 
concerns about the device, particularly for the school environments 
for which it is marketed and sold. 

We first tested the device in simulated situations to measure its 
performance in real-world scenarios and collected spontaneous and 
simulated vocalizations from high school students. We then 

analyzed the types of sounds that the algorithm found to be 
aggressive and determined, for those sounds, some common audio 
characteristics. We view this analysis as an initial exploration of the 
algorithm, using sound it would likely encounter in operation, 
rather than a definitive evaluation. 

Our testing and analysis found: 

• The algorithm frequently produced false positives (false 
findings of aggression) for sounds such as laughing, 
coughing, cheering and loud discussions. 

• Certain types of screaming that we expected to trigger the 
algorithm, in particular high-pitched shrieking, often 
failed to do so. 

• Some individuals we tested, particularly female high 
school students, tended to trigger false positives while 
singing, laughing and speaking. 

• Anger and aggression expressed quietly, without the 
markers of voice strain, did not trigger the algorithm. 

• The algorithm tends to trigger when a vocalization is 
higher pitched and contains audio features that generally 
correspond to a rough vocal tone or vocal strain. 

1.1  System Description 
According to our research, testing and interviews with Sound 

Intelligence, the Louroe aggression detector includes: 1) a 
microphone, 2) a sound-processing component that extracts sound 
features from raw audio input, 3) a machine-learning algorithm that 
uses those features to predict verbal aggression and 4) a 
thresholding component that contains settings for the algorithm. 

 
Figure 1: How the Louroe Digifact A works to detect aggression 

Dozens of times per second, the software converts the audio signal 
received by the microphone into audio features. Each set of audio 
features can be considered a frame of sound and is used to predict 
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whether that segment of the sound input is aggressive. According 
to our research and interviews with Sound Intelligence, sound 
volume is not a feature used by the algorithm because it is directly 
related to the sound’s distance to the microphone, which should not 
be a factor in determining aggressiveness. 

 
To train the system, Sound Intelligence labeled audio frames of 
aggressive and non-aggressive events and used those labeled 
frames as training data for a machine learning classification 
algorithm.1 Once trained, the classification algorithm generates a 
score ranging from 0.0 to 1.0 for each frame based on its audio 
features. This score represents an overall confidence for identifying 
aggression — from 0% to 100%. In operation, a confidence 
exceeding a set threshold over a long enough period of time results 
in a prediction of aggression by the device. 

 
The device also has threshold settings that are used to fine-tune the 
algorithm in operation. 2  However, the qualities of sounds that 
trigger the device are determined in training and set once it is 
installed on the device. In other words, while fine-tuning changes 
the device’s behavior, it does not change the types of sounds that 
the device correlates with inferences of aggression. Lowering the 
device’s sensitivity merely increases the confidence and time 
thresholds that must be met in order to raise an alarm. In practice, 
this may increase the risk of false negatives — cases where the 
algorithm should trigger but doesn’t. The same type of Sound 
Intelligence algorithm is used in all of Louroe’s Digifact A 
microphones, regardless of the environment (e.g., hospitals, 
schools, prisons, etc.) in which they are installed. 

 
While Sound Intelligence markets its algorithm as detecting 
aggression, the algorithm actually also seeks to flag instances of 
vocal distress and strain (e.g., when triggered, the algorithm’s 
webpage displays the warning “StressedVoice detected”). For the 
purposes of this document, we term all such triggering 
vocalizations as “aggressive.” 

2 Testing the System 
Our testing aimed to simulate the real-world operating environment 
for the device as closely as possible. We purchased a Louroe 
Digifact A microphone and licensed the aggression detection 
algorithm. We then rewired the device so that, instead of 
monitoring the surrounding environment, we were also able to 
input sound directly into the device from any audio recording. This 

 
1 Sound Intelligence engineers said the latest version was calibrated using audio 
collected in part from European customers, including some recordings of screaming 
children. We did not receive a direct response when we asked if any of the training 
data came from schools. 
2 The device can be fine-tuned by adjusting three variables: (i) the general sensitivity 
of the device (which has five settings), (ii) the volume over background noise at 
which sound is detected and (iii) the minimum time required to trigger a finding of 
aggression. For our testing, we followed Sound Intelligence’s recommendation to test 
the device at medium sensitivity, 10dB, and 500ms. However, the original 
recommended settings were 5dB and 500ms, according to our correspondence with 
Louroe and a guidance document it provided. 

allowed us either to monitor the device’s aggression measurement 
in real time or test recorded audio clips. Recorded audio was played 
into the device to reproducibly measure the predicted aggression.3 
We designed a protocol for testing the device's performance on 
student voices with the assistance of ProPublica data adviser Dr. 
Heather Lynch.4 

 
Figure 2: How we tested the Louroe Digifact A 

2.1 Field Testing 

The objective of field testing was to capture, as accurately as 
possible, how the device would respond to sounds in actual 
operation. 

2.1.1 Data and Methodology. We installed the devices for 
testing at a height and location in line with a guidance document 
provided by Sound Intelligence. We recorded sound clips using the 
Louroe Verifact A — a device with the same microphone 
sensitivity and frequency response as the Louroe Digifact A but 
without an onboard aggression detector. (The Digifact contains an 
onboard Orange Pi device that runs the aggression detector on a 
pared-down Linux operating system.) This allowed us to collect 
audio with a microphone having similar frequency response 
characteristics of the Digifact microphone and in the acoustics of a 
space where such a device would be deployed. The sound was 
recorded from the Verifact A in a high-fidelity format.5 

 
We used this setup to record sound at two high schools: Frank 
Sinatra School of the Arts in Queens, New York, and Staples 
Pathways Academy in Westport, Connecticut. We recorded 26 
students in two sessions in Queens and 14 students in one session 
in Westport. The students were 15 to 18 years old. 

 

3 The measurement of aggression tended to lag the timing of the sound by a fraction 
of a second. In order to match the timing of the aggression measurement with the 
timing of the sound itself, we wrote a script to simultaneously play and record the 
sound and sync the aggression detector data with the audio data. 
4 Lynch is an associate professor in the Department of Ecology and Evolution at 
Stony Brook University. Her research includes the analysis and characterization of 
penguin bioacoustics. 
5 The sound clips were recorded and played back at a 48,000 Hz sampling rate, which 
was far higher than the sound frequency components processed by the Sound 
Intelligence algorithm. 
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At each school, we installed the device in the ceiling and recorded 
students in a common area while they played games such as 
Pictionary. We also tested and recorded pairs of students in a 
smaller side room where a device was installed in the ceiling. 
During this pair testing, the students role-played situations of fear, 
frustration and anger from comic strips. They also sang unrehearsed 
songs and attempted to scream in an aggressive manner. 

During this pair recording, some of the vocalizations, screaming in 
particular, were too loud for the Verifact A and distorted its 
recording — a phenomenon known as “clipping.” This is a 
potential problem common to any microphone where the sound is 
too loud or too close to the microphone. To account for this issue, 
we retested a number of students at a later date in an environment 
where recorded audio was less likely to be clipped. We then 
disregarded any pair recordings having substantial clipping. 

In total, we recorded more than three hours of sound with the 
Louroe microphones at the two schools. 

2.1.2 Group Testing Results. The algorithm triggered frequently 
during the approximately two hours of group recording, during 
which we observed no actual or simulated aggression. A number of 
different vocalizations triggered the algorithm; including cheering, 
loud laughter and students shouting out answers. This suggests the 
algorithm is unable to distinguish between the vocal characteristics 
associated with enthusiasm and exuberance as opposed to genuine 
fear or aggression. 

Loud discussion sometimes also triggered predictions of aggression. 

Since we did not observe any aggression during the group testing, 
we considered any triggers false positives — inferences of 
aggressive behavior where there was none. 6  We tabulated the 
number of such false positives below, organized by the vocalization 
that triggered the alarm.7 

Vocalization 
Scream 
or Shout Laughter 

Loud 
discussion Cheering Total8 

False 
Positives 402 43 75 42 565 

Table 1: Group Testing Results 

A school setting contains a wide variety of environments and social 
contexts in which the device is expected to work. While we do not 
consider this false alarm rate as representative of the frequency of 

 
6 A prediction of non-aggression is the default state for the device. We did not count 
the number of true negatives (occasions where the device correctly was not 
triggered), since in a continuous recording with cross-talk it is impossible to 
determine when one vocal event ends and another begins. 
7 We counted a continuous triggering of the device as a false positive. Vocalization 
category is based on one annotator’s judgment of the most prominent sound at that 
time. We also note that the number of false positives exceeds the number of 
notifications that would be sent from the device in actual operation. This is because 
the device only sends one notification if multiple alarms are encountered in a short 
period of time. 
8 There were three instances where applause or singing triggered the detector in the 
group setting. 

false positives in operation, our group testing results show that the 
algorithm generates frequent false alarms in a common school 
scenario. 

2.1.3 Pair Testing Results. During our testing with student pairs, 
we found some instances of laughter, some singing and one 
student’s coughs triggered the device. There were also many 
instances of screaming or shouting that did not trigger the device, 
particularly screams that were high-pitched or that did not contain 
the markers of voice distortion. 

 
We tabulate below a number of categories of vocalizations.9 

 
 

Laughter 

Aggressive 
Scream or 
Shout 

Non-
aggressive 
Scream or 
Shout Singing Cough 

Triggered 16 30 17 3 4 
Did not 
Trigger 38 35 33 13 7 
Total 54 65 50 16 11 

Table 2: Pair Testing Results 

During pair testing, the students simulated aggressive and fearful 
screaming or shouting and were also asked to sing. However, they 
did not simulate laughter or coughing — those were spontaneous 
vocalizations recorded during testing. We recognize there may be 
differences between simulated and actual aggressive shouts and 
screams, and the aggression detector should only raise an alarm for 
genuine vocalizations. To account for this, we annotated whether 
sound clips of screaming were sufficiently aggressive.10 

 
In our testing data, we found many aggressive sound clips where 
the device did not respond. We considered such cases to be false 
negatives. In particular, the device tended to ignore high-pitched 
screaming. 
 
We also found 27 instances where normal speech falsely triggered 
the algorithm. 11  In particular, there were two female students 
whose voices regularly triggered the device while laughing, singing 
or speaking. 

2.2 Discussion 

9 A vocalization was considered to trigger the detector if we measured at least one 
alarm during it. In contrast to the group experiments, we also counted the number of 
vocalizations where the device was not triggered in the pair testing, since specific 
triggering and non-triggering vocal events could be isolated and identified. 
10 Human annotators determined from direct observation whether a sound clip was 
genuinely aggressive. Two annotators listened to a sound and classified it as 
aggressive if they agreed that a reasonable school administrator hearing it would be 
concerned and investigate. Disagreements between the first two annotators was 
resolved by a third annotator’s review. 
11 We did not tabulate speech as most of the recordings contained speech that did not 
trigger the device. 
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Our testing was designed to understand the performance of the 
algorithm in the field. Given the wide variation among individuals’ 
voices and the ways that emotional states are vocalized, our testing 
is neither exhaustive or comprehensive. However, these results do 
identify apparent weaknesses in the algorithm. We found many 
instances where the device appeared to make errors, whether by 
predicting aggression where there was none (false positives) or by 
failing to trigger when it should have (false negatives). 

 
The high number of false positives combined with false negatives 
suggests that the device is often unable to differentiate reliably 
between actual instances of aggression and benign vocalizations. 
The tendency for the algorithm to mischaracterize events may also 
lead to fine-tuning that reduces the device’s sensitivity to a level 
where otherwise aggressive incidents would be overlooked. 

3 Data Analysis 
We took a closer look at the clips recorded during the pair testing 
to learn more about what tends to trigger the algorithm. We 
examined sound frames in comparison to the algorithm’s 
measurements of aggression. Similar to the device, we then 
calculated features for each sound frame. We aggregated the sound 
features to understand, at a high level, the characteristics of sound 
considered aggressive by the algorithm. 

3.1 Analyzing a Frame of Sound 
To analyze sound, we start with the individual sound frames that 
comprise an audio clip. A sound frame can be represented by its 
raw audio signal (a wave representing sound amplitude over the 
sound frame) or by calculations on that signal. A representation 
commonly used in audio analysis is the frequency spectrum — 
obtained by calculating the raw sound frame’s amplitude at every 
frequency. Any sound frame can be fully represented in the time 
domain (the audio signal) or in the frequency domain (the 
spectrum) and transformed between the two. 12 
 

 
Figure 3: Representing Sound in the Frequency Domain 

The spectra of individual sound frames can be combined over time 
to produce a visual representation called a spectrogram. A 

 
12 For a more complete description of the fourier transform and its use in signal 
analysis, please see the textbook “Signals and Systems” by Alan V. Oppenheim and 
Alan S. Willsky, with S. Hamid Nawab. 

spectrogram plots the frequency components of sound frames over 
time, which can reveal many details about the sound, such as pitch 
and tone quality. 

 
We looked at the spectrograms for a number of different 
vocalizations to understand what kinds of sound tend to trigger the 
algorithm. The x-axis is the time of the sound recording, and the y-
axis is the frequency component. A brighter area indicates that the 
magnitude of the frequency component at that time is higher. 

 
Below is a spectrogram of speech for two students as they introduce 
themselves: student A at 0.1 seconds and student B at 1.1 seconds. 
These are examples of normal speech having a relatively clear tone 
and little auditory distortion. The algorithm gave this speech a low 
aggression score, and it did not trigger an alarm. 

 

Figure 4: Normal speech, male student A, female student B 
(classified as non-aggressive) 

There are bright and distinct striations visible in the lower 
frequency portion (bottom) of the spectrogram. These represent the 
loudest frequency components of the students’ speech. The 
bottommost (lowest frequency) band for each speaker is the 
fundamental frequency, or the perceived pitch of a voice. 
Successive bright bands at regular intervals above the fundamental 
represent the harmonics of the speech. Wider intervals between 
those bands indicate a higher pitch, and we can see that student B’s 
voice is higher-pitched. The more distinct these bands, the clearer 
the speech will sound (although many factors affect speech clarity). 
There is also a fairly clear drop-off in brightness (sound intensity) 
in the higher frequency components of the spectrogram for both 
utterances. This characteristic is representative of speech sounds. 
 
This is a spectrogram of a simulated shout from student A. 
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Figure 5: Simulated shout, male student A (classified as non-
aggressive) 

The harmonic bands have greater separation here, which indicates 
a higher pitch for student A than his previous utterance. We see a 
higher number of bands in the harmonic frequencies, which is 
perceived as a more intense sound. There are also brighter bands in 
the upper part of the spectrogram, which shows more balance 
between lower and higher frequency components. This balance is 
known as a flatter spectral tilt — a quality often associated with 
stressed voices. However, the bands of sound remain distinct and 
well-defined, which indicates that the speech has a clear tone 
without much distortion. While this sound clip had a higher 
aggression measurement, it was ultimately classified as non-
aggressive by the algorithm. Human annotators also did not find 
this simulated shout convincingly aggressive. 
 
This is a sound frame of a simulated scream from student A. 

 

Figure 7: Simulated scream, female student C (classified as 
non-aggressive) 

This sound has high intensity in the higher frequency components 
and displays far less distinct bands compared with the previous 
examples. This indicates some vocal strain in the speaker. The 
fundamental frequency and harmonics are far less well defined, 

 
13 Spectrum whitening refers to where the spectrum of the sound begins to appear 
more like white noise, which has an equal intensity at every frequency. 

which indicates audio distortion and a much rougher tone to the 
sound. This characteristic is also referred to as spectrum whitening. 
13 We found that audio frames with higher-pitched vocalizations 
(higher fundamental frequency), higher frequency components 
(flatter spectral tilt), and that contain distortions (spectral 
whitening) tended to trigger the algorithm. Human annotators 
found this simulated scream convincingly aggressive and the 
algorithm agreed. 

3.2 Analyzing Errors 
At the same time, we identified instances where high-pitched 
shrieks did not trigger the algorithm. The scream below is very 
high-pitched, has high-frequency components and contains the 
spectrum whitening that indicates vocal strain. However, the 
algorithm did not provide an aggression measurement above zero 
for most of the duration of the sound. While this was one of the 
sounds that had one of the highest measures of pitch and distortion, 
it did not contain a pattern that the algorithm recognized as an 
aggressive voice. 

 

Figure 8: Simulated scream, female student C (classified as 
non-aggressive) 

Machine learning models such as the aggression detection 
algorithm depend on pattern matching to the labeled data it is fed 
in training. If the training data used did not include examples of 
shrieks, or if the labeling process failed to identify such noises as 
aggressive, the algorithm may not correctly characterize such 
sounds in operation. 
 
When asked about the false negatives from higher-pitched shrieks, 
Sound Intelligence responded that they may result from the device 
not processing higher frequency components of audio. They also 
cited the potential similarity of shrieks to baby cries in their training 
data, which they labeled as non-aggressive. 
 
We also found a number of instances where the algorithm 
determined that singing, laughing and coughing were aggressive. 
We provide some examples of such vocalizations below. In each of 
these spectrograms, there is some evidence of flatter spectral tilt 
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and spectral whitening, particularly when compared to normal 
speech. 
 

 

Figure 9: Singing, female students D and E (classified as 
aggressive) 

 

Figure 10: Laughing, female student D (classified as aggressive) 

 

Figure 11: Coughing, female student F (classified as aggressive) 

We also found a number of instances where activated, energetic 
speech (known in psychology as high-arousal speech) triggered the 
algorithm. Women’s voices tend to be twice as high as men’s. We 
found that every speaking voice in the pair testing that triggered the 
algorithm belonged to a female student. 
 

 

Figure 12: Activated speech, female student D (classified as 
aggressive) 

 

Figure 13: Activated speech, female student F (classified as 
aggressive) 

 

Figure 14: Activated speech, female student B (classified as 
aggressive) 

It would require a large number of individuals from a full 
demographic range to fully train or test the device for effectiveness 
in all of its potential applications. At the same time, pitch and tonal 
quality vary among individual voices, even for people in the same 
demographic. Since the device is often installed in schools, we 
tested it on student populations. However, a more comprehensive 
dataset with a wider variety of voices would improve the analysis 
and give a fuller understanding of the contours and universal 
applicability of the underlying algorithm. 
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3.3 Calculating Features 
Instead of examining the spectrum for the audio clips frame by 
frame, the Sound Intelligence algorithm calculates a set of features 
from the spectrum and uses them to discriminate between 
aggressive and non-aggressive audio. In our analysis, we similarly 
calculate features from sound frames that broadly represent some 
spectral characteristics. 
 
These features are statistical summaries of the characteristics of a 
spectrum that can allow us to differentiate between different sound 
frames. They were taken from a review of academic research 
(including by Sound Intelligence) about audio features commonly 
used in the field of voice affect recognition and by the features’ 
predictive value to the algorithm output. However, these are not the 
exact features used by the Sound Intelligence algorithm. We instead 
chose features that would broadly reflect the pitch and tone 
characteristics of a sound. We previously noted instances where 
higher pitched vocalizations having a rougher tone and vocal strain 
tended to trigger the algorithm. We calculate features that 
correspond to those qualities: 
 
3.3.1 Features Relating to Pitch. 

• Fundamental Frequency: the peak with the lowest 
frequency in the sound spectrum, which is perceived as 
pitch by the human ear.14 

• Peak Frequency: the frequency in the spectrum with the 
highest intensity. 

• Spectral Centroid: the average of a spectrum’s frequency 
components, weighted by intensity.15 

3.3.2 Features Relating to Sound Quality 

• Spectral Rolloff: the frequency cutoff below which most 
of the energy of a sound is contained. A higher spectral 
rolloff indicates that there is more energy in the higher-
frequency components of a sound.16 

• Spectral Flatness: a measure from 0.0 to 1.0 for how 
similar a spectrum is to white noise, which has a spectral 
flatness of 1.0.17 

We aggregated the pair and group testing data and took a sample of 
the sound frame features that did or did not trigger the detector.18 
We then analyzed this data to learn which audio features the Sound 
Intelligence algorithm may be correlating with aggression. 
 

 
14 This is calculated using the fundamental frequency finding algorithm described in 
Sound Intelligence’s 2007 paper, “ Verbal aggression detection in complex social 
environments ” by P.W.J. van Hengel and T.C. Andringa. 
15 This is calculated using the librosa sound analysis library. 
16 We used 85% of energy for the spectral rolloff calculation. This is calculated using 
the librosa sound analysis library. 
17 This is calculated using the librosa sound analysis library. 
18 Out of the more than 500,000 sound frames available from our testing, we took a 
random sample of 2,000 out of more than 100,000 aggressive sound frames having a 

The distribution of the five features discussed is shown on the 
below plot along the diagonals. The orange curve represents 
features for sounds the algorithm found to be aggressive, and the 
blue curve represents non-aggressive sounds. As vocalizations 
became higher pitched, contained more energy in the higher 
frequency components and were accompanied by higher metrics for 
the “whitening” of the sound spectrum, the algorithm generally 
tended to predict aggression. 
 

 

Figure 15: Plotting Pairs of Sound Features 

By looking at pairs of features together above, we can see even 
better separation between the data points the algorithm found as 
aggressive (orange points) or not (blue points). We can thus 
visually separate the features for sound frames found to be 
aggressive and non-aggressive by the algorithm and identify ranges 
and combinations of sound features that correlate with an inference 
of aggression.19 Sounds outside of those ranges, whether higher or 
lower, did not contain features that the algorithm is trained to detect 
as aggression. 

3.4 Discussion 
Given that the algorithm operates off of audio features and does not 
take context or meaning into account, the apparent errors we found 

greater than 0.5 aggression score to represent sound frames that would trigger the 
detector, and 2,000 non-aggressive sound frames from the opposite side of the 
distribution to represent sound frames that would not. For this analysis, we 
considered only audio frames having an aggression score greater than zero and a 
volume reading greater than the 50th percentile, since not all sound feature 
calculations are meaningful; for example, for background noise and silence. 
19 As we note above, these are not necessarily the features used by Sound 
Intelligence. They have also noted that they calculate more features than the ones we 
measure here. 
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are foreseeable. Sound Intelligence acknowledges that the detector 
is imperfect, but maintains that the device is a valuable early 
warning system, particularly when calibrated properly and tested in 
real-world situations. While we have examined the performance of 
the algorithm, we should note that this is not a study of the real-life 
operation of the device. This testing also does not seek to measure 
whether this system is more effective than what we see as the 
baseline: the perception, communication and judgment of students, 
teachers and school administrators. 
 
Academics and lawmakers have raised questions about using big 
data and algorithms as a substitute for human judgment. For 
example, what kinds of disparate impacts can be inadvertently 
created by an algorithm?20 When an algorithm assigns blame for 
reasons that are difficult to comprehend, how does the broader 
system prevent punishing innocent behavior? 21  How much 
transparency should be provided to the surveilled about the training 
data and design of such algorithms?22  We hope that this study 
prompts further discussion and research into audio analytics 
devices sold to the public, and algorithmic decision making in 
general. 
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